Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia.
نویسندگان
چکیده
Burn wounds are prone to infection by Pseudomonas aeruginosa, which is an opportunistic pathogen causing various human diseases. During infection, the bacterium senses environmental changes and regulates the expression of genes appropriate for survival. A purine-auxotrophic mutant of P. aeruginosa was unable to replicate efficiently on burn wounds, suggesting that burn wounds are purine-deficient environments. An in vivo expression technology based on purEK gene expression was applied to the burned mouse infection model to isolate P. aeruginosa genes that are specifically induced during infection. Four such in vivo-inducible (ivi) genetic loci were identified, including the gene for a superoxide response regulator (soxR), the gene for a malate synthase G homologue (glcG), an antisense transcript of a putative regulator responding to copper (copR), and an uncharacterized genetic locus. SoxR of Escherichia coli is known to regulate genes involved in protecting the bacterium against oxidative stress. The expression of soxR was proven to be highly inducible during the infection of burned mice and also inducible by treatment with paraquat, which is a redox-cycling reagent generating intracellular superoxide. The SoxR protein functions as an autorepressor in the absence of paraquat, whereas in the presence of paraquat, this autorepression is diminished. Furthermore, a soxR null mutant was shown to be much more sensitive than wild-type P. aeruginosa to macrophage-mediated killing. In support of this observation, a soxR null mutant exhibited a significant delay in causing systemic infections in the burned mice. Since most mortality in burn patients is caused by systemic infection, the defect in the ability to cause efficient bacteremia in burned mice suggests an important role of the soxR gene in the infection of burn wounds.
منابع مشابه
Outer Membrane Protein D Gene in Clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance
Background & Objectives: Pseudomonas aeruginosa is a common cause of nosocomial infection. OprD protein is a specific protein regulating the uptake of carbapenem antibiotic. Loss of OprD is the main mechanism of Pseudomonas Aeruginosa resistance to carbapenem. In this study, the presence of OprD gene is investigated in isolated Pseudomonas Aeruginosa in burn patients of Ghotboddin hospital in S...
متن کاملThe Effect of Silver Nanoparticles on Wounds Contaminated with Pseudomonas aeruginosa in Mice: An Experimental Study
The microorganisms have been usual noted as the major cause of delayed wound healing. Pseudomonas aeruginosa is the most common pathogen causing these infections. Silver nanoparticles (AgNPs) show ample antibacterial activities. In present study, the effect of AgNPs alone and in combination with tetracycline investigated on inoculated wounds with Pseudomonas aeruginosa in mice. Twenty mice anes...
متن کاملThe Effect of Silver Nanoparticles on Wounds Contaminated with Pseudomonas aeruginosa in Mice: An Experimental Study
The microorganisms have been usual noted as the major cause of delayed wound healing. Pseudomonas aeruginosa is the most common pathogen causing these infections. Silver nanoparticles (AgNPs) show ample antibacterial activities. In present study, the effect of AgNPs alone and in combination with tetracycline investigated on inoculated wounds with Pseudomonas aeruginosa in mice. Twenty mice anes...
متن کاملEvaluation of the Effects of Iron Oxide Nanoparticles on Expression of TEM Type Beta-Lactamase Genes in Pseudomonas Aeruginosa
Pseudomonas aeruginosa is a common cause of surgical-site infections and healthcare-associated infections in the bloodstream, and urinary tract. Iron oxide nanoparticles (IONPs) have shown, to possess antibacterial features. The nanoparticles' status as emerging therapeutic elements has motivated investigators to assess the effects of iron nanoparticles on the expression of TEM type be...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 67 10 شماره
صفحات -
تاریخ انتشار 1999